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A B S T R A C T
The weather-sensitive industries exhibit large differences in revenue between normal and bad 
years. This study develops a two-state model to formulize the value of weather risk (VWR) 
based on maximizing individual revenue. Large VWR is worth investing more in disaster risk 
reduction. The analytic expression of VWR measures the optimal tradeoff between input 
reduction (decreasing future revenue) and risk reduction (decreasing possible loss). As risk 
ambiguity and decision maker’s ambiguity aversion increase, VWR will increase. The use of 
insurance or self-protection can decrease VWR under concave revenue functions, but is 
inefficient under convex ones. We further generalize the model to evaluate the average VWR 
of all individuals, or apply it to compute other disaster risk value.   
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1. Introduction 
Weather risks have considerable impact on some industries highly sensitive to minor weather changes, 
such as energy, retail, agriculture, clothing, tourism, transportation, and construction industries. Thirty 
percent of gross domestic product of the United States is affected by the weather. The demand for 
weather risk management increases when these industries desire improved cash flow stability, more 
accurate budget management, greater earnings consistency, and higher risk-adjusted returns. When 
decision-makers (DMs) determine how much budget for disaster prevention (decreasing possible loss) 
or production input (increase revenue), benefit-cost analysis in weather risk management is necessary 
because these two budgets are crowded out each other. In order to maximize the firm’s wealth, a DM 
should spend how much in reducing per unit risk, which is defined by the value of weather risk (VWR) 
in this study. Intuitively, the higher the VWR, the higher DMs are willing to pay for risk reduction. Just 
as the value of a statistical life is a key parameter in the analysis of government policy (Bleichrodt, et 
al, 2019), VWR is a key parameter in weather risk management of a firm. 

The seasonal weather is predictable by probabilistic forecasts but not exact. There exists the 
ambiguity with respect to the distribution of weather. The technology used for modern weather 
predictions combines computer-based models with human experience: for instance, the El Niño–
Southern Oscillation, linked to variations in seasonal forecasts (Goddard et al., 2001), typically occurs 
every 3–5 years and typically lasts 2 years. However, historically, the occurrence interval has varied 
from 2 to 7 years and has lasted as long as 3–4 years. The presence of systemic weather risks (Miranda 
and Glauber, 1997) lead to many challenges in efficiently and accurately forecasting business revenues, 
including restating input source, and modeling geographical differences across regions. Carriquiry and 
Osgood (2012) studied the interaction among weather forecasts, index insurance and input decisions. 
They do not consider the ambiguity in probabilistic weather forecasts and the ambiguity aversion of 
decision maker. Since the Ellsberg (1961) paradox, many experimental works have demonstrated that 
subjects are not indifferent to ambiguity over probabilities (Camerer, 1995). Various decision models 
with forms of ambiguity aversion have been proposed by decision theorists (Etner et al., 2012). 
Therefore, this study fulfills the gap in the literature. Our model incorporates business revenues, weather 
forecast and decision makers’ ambiguity aversion to the formula of VWR. 

Weather forecasts developed by climatologists are for reference, and DMs must consider 
ambiguity1 in weather risk, including occurrence probability and loss distribution when they make 
policies to maximize a (weather-dependent) expected benefit. This paper refers to the theory of 
ambiguity aversion developed by Klibanoff et al. (2005), and the effect of ambiguity aversion on the 
VWR is analyzed in this study. 

Action against weather risk may reduce the probability of loss occurrence (i.e., self-protection) or 
reduce the severity of a potential loss (i.e., insurance). Insurance costs DMs in all states to increase 
wealth in a loss state. This method reduces revenue volatility. In practice, most DMs are ambiguity 
averse. Their willingness to pay for insurance increases with ambiguity and ambiguity aversion 
demonstrates that ambiguity aversion increases the demand for insurance (Snow, 2011; Alary et al., 
2013). This study shows that ambiguity averters use insurance to reduce the VWR, and further examines 
the criterion for adopting insurance. 

Self-protection aims at reducing the probability of a loss state at a cost incurred in all states. This 
method may strengthen protection against risks or improve weather forecasts to avoid more input under 
a bad weather. Accurate forecasts reduce weather risks and simultaneously reduced weather ambiguity. 

                                                             
1 Knight (1921) defines ambiguity as uncertainty about probability, created by missing information that is relevant 
and could be known. 
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Without accurate forecasts, the probability of earning insufficient revenue is almost equal to that of 
having a bad weather. If the weather forecast is effective, then the probability of earning insufficient 
revenue is less than that of having a bad weather. DMs can make smart inputs to get more or lose less. 
Snow (2010) reveals that ambiguity aversion increases the demand for self-protection, but Alary et al. 
(2013) arrive at the contradictory conclusion. Treich (2010) argues that the effect of ambiguity aversion 
on self-protection is unclear. In the current study, we demonstrate that self-protection reduces the VWR, 
and further examine the criterion for adopting self-protection. 

The contributions of this paper are as follows: First, we formulize the VWR on the basis of different 
revenues in normal and bad weathers and show that the VWR increases with ambiguity aversion. 
Benefit–cost analysis thus can be employed to determine how to manage weather risk. The VWR also 
refers to the maximum payment for reducing one unit risk. This study demonstrates that the VWR is 
derived from the subjective value of ambiguity aversion and the objective value of the revenue 
difference (between in normal years and in bad years) and revenue margins. Second, compared to past 
literature, our model first adopts different revenue functions instead of concave utility function. The 
revenue functions may be concave or convex at different production stages. The use of insurance and 
self-protection against weather risk may be not efficient at the convex production stage. We examine 
the contradictory use of insurance and self-protection criteria, and demonstrate that both insurance and 
self-protection can reduce the VWR. The value of information for forecasting weather depends on the 
forecast accuracy and revenue differences. Finally, we generalize the model for more applications and 
examine the model’s limits. The discussion and analysis of such model can contribute to an efficient 
and cost effective risk management approach, and then help reduce risk exposure and vulnerability. 

The remainder of the paper is organized as follows: Section 2 discusses and formulizes the VWR 
under ambiguity aversion, insurance, and self-protection conditions. Section 3 generalizes the model 
and explains the model limit. The conclusions are presented in Section 4. 

 

2. VWR under ambiguity aversion, insurance, and self-protection 
To greatly simplify the technical analysis, we assume that the input wealth w results in a high revenue 
amount u(w) in a normal weather (year) with the probability 1-p, and a low revenue amount v(w) in a 
bad weather (year) with the probability p, where u(w) > w > v(w) > 0. A DM may purchase an insurance 
policy with special premium τ and coverage I. The revenues are adjusted by in a high revenue amount 
u(w − τ) in a normal weather (year) and a low revenue amount v(w − τ) + I in a bad weather (year). A 
DM may pay some expense e for disaster resistance to reduce this probability p(e) of bad weather. The 
expected revenues are adjusted by (1 − p(e)) u(w − e) in a normal weather (year) and p(e) v (w − e) in a 
bad weather (year). 

As economists often assume that a firm’s production function is increasing and concave, the first 
and second derivations of two revenue functions u(w) and v(w) are assumed to follow u′(w) > v′(w) > 0 
and 0 > u″(w) > v″(w). The input w is considered product cost. This is logical because DMs can obtain 
profit u(w) − w (which means revenue minus cost) in a normal year or suffer loss w − v(w) in a bad year. 
Individual (state-dependent) expected benefit B is given using 
 (1 ) ( ) ( )B p u w pv w w= − + − .      (1) 

The expected benefit is the expected revenue (of normal and bad years) minus the input wealth. Each 
DM may have idiosyncratic normal revenue u(w) and bad revenue v(w), and faces various weather risks. 
We expand the model to a general form Section 4. 

According to Eq. (1), Proposition 2.1 provides an explicit formula of the VWR: 
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Proposition 2.1. The VWR is expressed as 

  
( ) ( )VWR

(1 ) '( ) '( ) 1
dw u w v w
dp p u w pv w

−
≡ =

− + −
.                                      (2) 

Proof: A DM maximizes a (state-dependent) expected benefit. The first condition of Eq. (1) equals zero. 
We can get the equality of the right-hand side in Eq. (2). Because the equality can capture this tradeoff 
between a change in input wealth w and a change in weather risks p, the VWR is defined in Eq. (2). The 
higher value of VWR means that the higher impact of weather risk on the revenue and that it is worth 
devoting more wealth to reduce weather risk. 

Observe that the VWR depends on w, p, and the revenue function conditioned on the basis of 
weather risk. The denominator of equality on the right-hand side in Eq. (2) corresponds to the expected 
marginal benefit. The marginal benefit is always positive; otherwise, the DMs are unwilling to devote 
more wealth into production. The larger expectation of marginal benefit leads to a smaller VWR. That 
is, the DM should invest more wealth into the revenue function to obtain more profit because of the 
probability of a higher marginal revenue or lower loss. The numerator of the equality on right-hand side 
in Eq. (2) corresponds to the revenue difference between under a normal and bad weather. Once the 
revenue difference increases, the weather risk affects the revenue or profit to a greater extent. The 
increase in VWR makes it worth investing more wealth into weather risk management to stabilize the 
revenue or profit. The formula in Eq. (1) shows the basic value of weather risk. 

To analytically study ambiguity aversion, we introduce the ambiguity attitude used by Klibanoff et 
al. (2005) (KMM hereafter). The ambiguity attitude function φ  is a linear one if a DM is ambiguity 
neutral, or a concave one if a DM is ambiguity averse, or a convex one if a DM is ambiguity preferring. 
Because empirical studies indicate that most people are ambiguity averse, the ambiguity attitude 
function φ  is assumed to follow ( 1) ( )( 1) 0n nφ+− >  for any positive integer n. For comparison, we 
assume that the DM’s subjective beliefs are such that the expected valuation of the ambiguity random 
variable ε, E[ε], is equal to zero. The occurrence probability with ambiguity of bad weather is denoted 
by p p ε= + . The DM’s utility W is expressed using 

 1( [ ((1 ) ( ) ( ) )])W E p u w pv w wφ φ−= − + −                   (3) 

where p p ε= +  and (1 ) ( ) ( )B p u w pv w w= − + −  . The utility W in Eq. (3) is less than the expected 
benefit B in Eq. (1) because of the concave function φ , as shown by the subsequent inequality in Eq. 
(4), indicating that the subjective belief of DMs’ ambiguity aversion reduces the expected benefit. The 
inequality [ ( )] [ ( )]E B E Bφ φ<  implies 

 
1 [ ( )] [ ]E B E B Bφ φ− = =    (4) 

In the case of ambiguity neutrality, the ambiguity attitude function φ  become with a linear one. The 
utility W in Eq. (3) degrades to the expected benefit B in Eq. (1). 

The natural extension of the VWR under ambiguity and ambiguity aversion conditions is obtained 
using Proposition 2.1. Proposition 2.2 provides an explicit formula. 

Proposition 2.2 The VWR of an ambiguity-averse DM, facing the level of ambiguity captured using ε, 
is analytically expressed: 

 ε
( ( ) ( )) [ '( )]VWR

[ '( ) ']
dw u w v w E B
dp E B B

φ
φ

−
= =


,     (5) 

where ' (1 ) '( ) '( ) 1B p u w pv w= − + −  . 
Proof: A DM maximizes the utility of Eq. (3). The first condition equals zero, such that we obtain the 
following equality:  
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( ( ) ( )) [ '( )] [ '( ) '] )

0
'( [ ( ( ))])

dwu w v w E B E B B
dW dp
dp E B w

φ φ

φ φ

− + +
= =





, 

which implies that the following equality holds: 

 ( ( ) ( )) [ '( )] [ '( ) ' ] 0dwu w v w E B E B B
dp

φ φ− + + =


. 

We obtain the right-hand side of equality in Eq. (4). Because the equality combines the VWR with 
DM’s ambiguity and ambiguity aversion, the VWRε is defined using Eq. (4). Under conditions of 
ambiguity neutrality, 'φ  is constant, such that Eq. (4) becomes Eq. (2) because '' 0φ < . According to 
the formula in Eq. (5), an ambiguity-averse DM facing higher weather ambiguity would accept larger 
VWR, and then tend to pay more for reducing weather risk.  

We subsequently examine the effect of ambiguity aversion on the VWR. DMs become more 
ambiguity averse; in that, the ambiguity aversion function ϕ  is more concave than φ . We thus define 
ϕ  using a concave transformation h of φ , where h > 0, h′ > 0, and h″ < 0. 

Proposition 2.3. An increase in ambiguity aversion always leads to an increase in VWRε. That is, the 
following inequality should hold: 

 
( ) ( ) ( ( ) ( )) [ '( )]

' [ '( ) ']
u w v w u w v w E B

B E B B
φ

φ
− −

<                                (6) 

and   


 



 

( ( ) ( )) [ '( )] ( ( ) ( )) [ '( )]
[ '( ) '] [ '( ) ']

u w v w E B u w v w E B
E B B E B B

φ ϕ
φ ϕ

− −
< . (7) 

Proof: As the probability p  increases, B  decreases because u > v, and '( )Bφ  subsequently increases 
because '' 0φ < . Simultaneously, 'B  decreases because u′ > v′ > 0. Thus, the covariance of '( )Bφ  and 

'B  is negative. The covariance rule implies that the following inequality will hold:  
 [ '( ) '] [ '] [ '( )]E B B E B E Bφ φ< . 

We have 

 
( ( ) ( )) [ '( )] ( ( ) ( )) [ '( )] ( ) ( ) .

[ '( ) '] [( '( )] [ '] [ ']
u w v w E B u w v w E B u w v w

E B B E B E B E B
φ φ

φ φ
− − −

> =    

Let ( )hϕ φ=  be a concave transformation h of φ  so that the DM is more ambiguity averse;
[ '( )] [ '( ( )) '( )]E B E h B Bϕ φ φ= . As the probability p  increases, '( ( ))h Bφ  increases because h″ < 0. 

The positive covariance of '( ( ))h Bφ  and '( )Bφ  implies that 
 [ '( ( )) '( ))] [ '( ( ))] [ '( ))].E h B B E h B E Bφ φ φ φ>     
Similarly, the negative covariance of '( )Bϕ  and (1 ) '( ) '( ) 1p u w pv w− + −   implies that  
 [( '( )((1 ) '( ) '( ) 1)] [( '( )] [(1 ) '( ) '( ) 1]E B p u w pv w E B E p u w pv wϕ ϕ− + − < − + −    .  

Therefore,  we  have   ( ( ) ( )) [ '( )] ( ( ) ( )) [ '( ( ))] [ '( )] ( ( ) ( )) [ '( )] ,
[ '( ) '] [ '( ( ))] [ '( ) '] [ '( ) ']

u w v w E B u w v w E h B E B u w v w E B
E B B E h B E B B E B B

ϕ φ φ φ
ϕ φ φ φ

− − −> =  

where the covariance of '( ( ))h Bφ  and '( ) 'B Bφ  is negative. According to Eq. (6) and (7), a DM with 
ambiguity aversion tends to estimate larger VWR than the one with ambiguity neutral, and is willingness 
to pay more for reducing weather risk. 

Because the introduction of ambiguity increases the VWR of an ambiguity-averse DM compared 
with cases with no ambiguity, more ambiguity can also lead to greater VWR.  
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Proposition 2.4. A larger ambiguity 'ε  than ε  always leads to larger VWRε’ of an ambiguous 
averser than VWRε’. That is, the following inequality should hold: 

 ( ( ) ( )) [ '( )] ( ( ) ( )) [ '( ')]
[ '( ) '] [ '( ') ']

u w v w E B u w v w E B
E B B E B B

φ φ
φ φ

− −
>                  (8) 

where ' 'p p ε= +  and ' (1 ') ( ) ' ( ) 1.B p u w p v w= − + −   
Proof: An increase in ambiguity reduces the utility of an ambiguous averser, ( ') ( )B Bφ φ< , and 
therefore increases the first derivative of the concave function ,φ  '( ') '( ).B Bφ φ>   It implies that 

[ '( ')] [ '( )]E B E Bφ φ> . Since the covariance between '( )Bφ  and B  is negative, similarly, the 
covariance between '( )Bφ  and 'B , the one between '( )Bφ  and 'B , and the one between '( ')Bφ  and 
B , are shown to be negative.  The following inequality hold due to [ '] [ ]E B E B= : 

[ '( ')((1 ') '( ) ' '( ) 1)] [ '( ')((1 ) '( ) '( ) 1)] [ '( )((1 ) '( ) '( ) 1)].E B p u w p v w E B p u w pv w E B p u w pv wφ φ φ− + − < − + − < − + −  

Therefore, [ '( )] [ '( ')]

[ '( ) '] [ '( ') ']

E B E B

E B B E B B

φ φ

φ φ
> . According to Eq. (8), the VWR become large as the ambiguity 

aversion of a DM gets high. Such DM tends to pay more for reducing weather risk. 
When the occurrence probability of a bad weather is the main cause of increased VWR or VWRε, 

a DM may make an effort e to decrease this probability p(e). The convexity of p(e) with p″(e) > 0 is 
logical because p(e) reduces (p′(e) < 0) and the marginal decrement (−p′(e)) as the effort e decreases. 
The condition sufficient for self-protection is the expected benefit after self-protection exceeds what it 
was previously.  
 (1 ) ( ) ( ) (1 ( )) ( ) ( ) ( )p u w pv w w p e u w e p e v w e w− + − < − − + − − .     (9) 

Eq. (9) is rewritten as ( ) ( ) ( ) (1 ( )) ( ) (1 ) ( )pv w p e v w e p e u w e p u w− − < − − − − . That is, the expected 
increase in normal revenue is larger than the expected decrease in bad revenue. Subsequently, the DM’s 
objective is to select the prevention effort e to maximize the expected benefit: 

 (1 ( )) ( ) ( ) ( )eB p e u w e p e v w e w= − − + − −    (10) 
If there exists e* such that the first condition of Eq. (9) equals zero, we have 

 
* * *

* * * *

( '( ))( ( ) ( )) 1
(1 ( )) '( ) ( ) '( )

p e u w e v w e
p e u w e p e v w e
− − − −

=
− − + −

.               (11) 

The existence of e* may be logical because ( '( ))( ( ) ( ))p e u w e v w e− − − −  decreases and 
(1 ( )) '( ) ( ) '( )p e u w e p e v w e− − + −  increases as the effort e increases when the revenue difference u(w) 
− v(w) is larger than the expected marginal benefit (1 − p)u’(w) – pv’(w) − 1. 
 
Proposition 2.5. The DM can reduce the VWR to the special level a by paying special e for self-
protection.  

 
( ) ( ) ( ) ( )

(1 ( )) '( ) ( ) '( ) 1 (1 ) '( ) '( ) 1
u w e v w e u w v wa

p e u w e p e v w e p u w pv w
− − − −

= <
− − + − − − + −

  (12) 

Proof: A DM maximizes a (state-dependent) expected benefit. The first condition of Eq. (10) equals 
zero. It implies the left-hand side of inequality in Eq. (12). ( ) ( )u w e v w e− − −  ( ) ( )u w v w< −  holds 
because u′>v′> 0. Because u and v are concave functions, the revenue margin '( ) '( )u w e u w− >  and 

'( ) '( )v w e v w− > . This implies that (1 ) '( ) '( ) 1p u w pv w− + − is larger than 
(1 ( )) '( ) ( ) '( ) 1p e u w e p e v w e− − + − − . Thus, an effort e can reduce the VWR. The function f(e) 
defined using the following equation is continuous because that u(w) and v(w) are continuously 
differentiable and decrease with the effort e. Therefore, we can identify a special e such that ( )f e a= . 
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( ) ( )( )

(1 ( )) '( ) ( ) '( ) 1
u w e v w ef e

p e u w e p e v w e
− − −

=
− − + − −

     

As ambiguity and ambiguity aversion increase, the VWR increases, as shown in Proposition 2.3. The 
DM can reduce the VWR to the same level a by taking some self-protection effort e. 

Weather forecasting is a useful method of self-protection. If the forecast is normal, the business 
operations start; otherwise, they stop. The expected revenue is expressed by using

(1 ) ( ) ( )g b g b gB p u w p v w w= − + − , where
b gp  denotes the probability of a bad weather given by a normal 

forecast. We assume that the weather forecast is skillful. 
b gp  is less than p; consequently, 1 b gp−  is 

larger than 1−p. Therefore, Bg exceeds B. The information value of a skillful forecast is the difference 
between Bg and B, expressed using 

(1 ) ( ) ( ) ((1 ) ( ) ( ) ) ( )( ( ) ( ))b g b g b gp u w p v w w p u w pv w w p p u w v w− + − − − + − = − − .  (13) 

Observe that the value of information increases with the accuracy of weather forecast 1 b gp−  and the 
difference in revenue ( ) ( )u w v w− . The DM may devote effort e in weather forecasting to obtain a lower 
losing probability ( ) = b gp e p . The VWR thus decreases. 

When loss from a bad weather is the main cause for the increase in the VWR or VWRε, the DM 
may purchase insurance to compensate for severe losses. We assume that insurance coverage and 
premiums are denoted by I and τ, respectively. The sufficient condition for purchasing self-insurance is 
that the expected benefit with insurance is larger than that without insurance: 

 (1 ) ( ) ( ( ) ) (1 ) ( ) ( )IB p u w p v w I w p u w pv w wτ τ= − − + − + − > − + − , (14) 

where BI denotes the expected benefit with insurance. This implies that the expected insurance claim is 
larger than the expected reduction in revenue. However, this seldom is the case because the insurer 
obtains a negative expected benefit. Although DMs’ expected benefits decrease, they may still purchase 
insurance because insurance can stabilize revenue volatility. This advantage contributes to business 
operations and lowers the probability of financial distress. 
 
Proposition 2.6. A DM can reduce the VWR to the special level b by buying an insurance policy with 
special premium τ and coverage I:  

 
( ) ( ) ( ) ( )

(1 ) '( ) '( ) 1 (1 ) '( ) '( ) 1
u w v w I u w v wb
p u w pv w p u w pv w

τ τ
τ τ

− − − − −
= <

− − + − − − + − .               
(15) 

Proof: A DM maximizes a (state-dependent) expected benefit. The first condition of BI in Eq. (14) equals 
zero, implying the left-hand side of inequality in Eq. (15). 

( ) ( ) (1 ) '( ) '( )IdB dw dw dwu w v w I p u w pv w
dp dp dp dp

τ τ τ τ= − − + − − + + − − + −    

( ) ( ) ( ) ( )u w v w I u w v wτ τ− − − − < −  holds because u′ > v′ > 0. Because u and v are concave functions, 
'( ) '( )u w u wτ− >  and '( ) '( )v w v wτ− > . This implies that (1 ) '( ) '( ) 1p u w pv w− + −  is larger than 

(1 ) '( ) '( ) 1p u w pv wτ τ− − + − − . Thus, a MD can reduce the VWR by purchasing some insurance 
policies. The function f (τ, I), defined by the following equation, is continuous because u and v are 
continuously differentiable and decrease with premium τ and coverage I. Therefore, we can identify a 
specific τ and I such that f (τ, I) = b. 

 
( ) ( )( , )

(1 ) '( ) '( ) 1
u w v w If I
p u w pv w

τ ττ
τ τ

− − − −
=

− − + − −
. 
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DMs facing greater ambiguity or having greater ambiguity aversion have larger VWRℇ , as shown in 
Proposition 3.3. They must pay higher insurance premiums τ for high coverage I to reduce the VWR to 
the same level b. 

 

3. Generality and limits of models 
Consider an individual region (situation) i occupying a ratio (probability) qi to the entire area (all 
situations) and facing individual weather risks with a probability pi. The weather risk p  has a 
probability pi with a ratio qi for i =1,…,n, where

1
1

n

ii
q

=
=∑ , and hence

1
( )

n

i ii
E p q p p

=
= =∑ . DMs may 

require the VWR for the entire area to manage the total weather risk. On the one hand, the model 
generality may be applied to the various probabilities of a bad weather in different areas. The 
government aspires to establish compulsory disaster insurance to insure individuals against weather risk 
and to redistribute wealth across agents in the economy. Public utilities or services account for social 
equity and must maintain a uniform outcome for all people. They cannot redistribute input sources 
according to different weather risk exposures in different areas. On the other hand, the model generality 
may be applied to the different probabilities of different bad weathers. Occurrence probabilities qi for 
bad weather in cases of storms, hurricanes, floods, heavy rainfall, and droughts differ. The revenue 
function corresponds to different weights pi. 

According to the natural extension of the model generality under ambiguity and ambiguity aversion 
conditions, the DM’s utility is expressed using 

 1
1

( ( ((1 ) ( ) ( ) )))n
p i i ii

W q p u w p v w wφ φ−
=

= − + −∑

  ,               (16) 

where i ip p ε= + for all i =1, 2, 3,…, n. DMs with ambiguity aversion still have a greater VWR than 
those with ambiguity neutrality, as shown in the following Proposition. Greater ambiguity leads to 
identical results. 
Proposition The analytical value of the multi-weather risk of an ambiguity-averse DM facing the level 
of ambiguity captured using ε can be expressed as follows: 

 1

1

( ( ) ( )) '((1 ) ( ) ( ) )
VWR

( '((1 ) ( ) ( ) )((1 ) '( ) '( ) 1)))

n
i ii

p n
i i i i ii

u w v w p u w p v w w

q p u w p v w w p u w p v w

φ

φ
=

=

− − + −
=

− + − − + −
∑

∑


 

   

  (17) 

and 

 
( ) ( )VWR

(1 ) '( ) '( ) 1p
u w v w

p u w pv w
−

>
− + −

, (18) 

where 1 2 3( , , , ..., )np p p p p=      corresponds in order to the ratio series 1 2 3( , , , ..., )nq q q q  and ( )i iE p p= . 
Proof: A DM maximizes the utility of Eq. (15). The first condition equals zero so that we obtain the 
equality: 

1
( '((1 ) ( ) ( ) )(((1 ) '( ) '( ) 1) ( ) ( )) 0.n i i

i i i i ii

dp dpdwq p u w p v w w p u w p v w u w v w
dp dp dp

φ
=

− + − − + − − + =∑   

We obtain the right-hand side of equality in Eq. (16).  

The inequality 
1

( '((1 ) ( ) ( ) ) 1
'((1 ) ( ) ( ) )

i i
n

i ii

p u w p v w w
p u w p v w w

φ
φ

=

− + −
<

− + −∑
 implies the inequality 
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1

( '((1 ) ( ) ( ) ) ((1 ) '( ) '( ) 1) ((1 ) '( ) '( ) 1)
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We summarize the two sides of this inequality. Because 
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1
((1 ) '( ) '( ) 1) (1 ) '( ) '( ) 1

n

i i ii
q p u w p v w p u w pv w

=
− + − = − + −∑ . It implies that Eq. (18) holds. Eq. (17) 

generalizes the application of simple VWR model with two-state revenues and one kind disaster as 
mentioned in Session 2.  

The validity of self-protection and insurance in reducing the VWR is under the concave assumption 
of normal and bad revenue functions. However, in practice, these two revenue functions may not always 
be concave. Propositions 2.4 and 2.5 may not hold. For example, Debertin (2012) illustrates a 
neoclassical production function in agriculture as shown in Figure 1; this function has long been used 
to illustrate relationships between inputs (wealth), such as seeding, weeding, application of fertilizers, 
irrigation, and pesticides, and outputs (yields), such as drying, processing, and preservation. The curve 
is convex in the first stage but concave in the second. Therefore, the marginal revenues in the first stage 
increase with input wealth. Such marginal revenues may be sufficiently large to invert the inequality in 
Eqs. (12) and (15). That is, the revenue increases rapidly during the initial period of production, and 
thus, the DM should invest more wealth in production and less in self-protection and insurance to 
maximize the expected benefit. 

 

 

 

 

 

 

 
 

       Figure 1. General agricultural production function 

 

4. Conclusion 
The frequency and intensity of extreme weather events have increased recently. Many countries 

have appropriated considerable funding to develop their weather distributions, particularly after 
sustaining severe climatic damage. Humans remain unable to control and accurately forecast the weather, 
and weather risks are ambiguous. Moreover, the sources of ambiguity may be complex. Every 
ambiguity-averse DM facing ambiguity should manage weather risk to maximize their expected benefit. 
They should estimate individual VWR and subsequently decide which action to take to reduce the VWR 
(e.g., self-protection or insurance). 

 To formulize the VWR and analytically study ambiguity aversion, this study assumes that weather-
sensitive industries have normal and bad revenues and thus marginal revenue in normal and bad years, 
respectively. We derive the analytical expression of the VWR of an ambiguity-averse DM facing 
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weather ambiguity. This VWR depends on the revenue difference and expected marginal revenue. As 
risk ambiguity and ambiguity aversion increase, the VWR increases; however, the VWR decreases as 
the use of self-protection (reducing the occurrence probability of a bad weather) or insurance (reducing 
the amount of loss) increases. The above-mentioned conclusion holds if the revenue function is concave. 
The insurance and self-protection against weather risk is inefficient if the revenue function is convex. 
Accurate forecasts have been widely used in self-protection. The forecast accuracy and revenue 
differences can be used to determine the value of weather forecasts.  

The model developed herein can be generalized to evaluate the VWR under climatic multi-risk or 
multi-area conditions. During the convex production stage, self-production or insurance may not be 
DMs’ optimal choices because the higher marginal yield provides DMs with more expected revenues 
than expected weather losses. The discussion and analytic expression of the VWR in this paper 
contribute to benefit–cost analysis in weather risk management.  
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